Prime geodesic theorem for the Picard manifold

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The prime geodesic theorem for higher rank spaces

The prime geodesic theorem for regular geodesics in a higher rank locally symmetric space is proved. An application to class numbers is given. The proof relies on a Lefschetz formula that is based on work of Andreas Juhl.

متن کامل

A prime geodesic theorem for higher rank spaces

A prime geodesic theorem for regular geodesics in a higher rank locally symmetric space is proved. An application to class numbers is given. The proof relies on a Lefschetz formula for higher rank torus actions.

متن کامل

Ruelle zeta function and Prime geodesic theorem for hyperbolic manifolds with cusps

For a d-dimensional real hyperbolic manifold with cusps, we obtain more refined error terms in the prime geodesic theorem (PGT) using the Ruelle zeta function instead of the Selberg zeta function. To do this, we prove that the Ruelle zeta function over this type manifold is a meromorphic function of order d over C.

متن کامل

Two-geodesic transitive graphs of prime power order

In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be   $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2020

ISSN: 0001-8708

DOI: 10.1016/j.aim.2020.107377